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ABS TRACT

A predator-prey system is mode lled by a pair of ordinary differential

equations , and the qualitative effects of prey nutrient enrichment and

predator harvesting at a rate proportional to the predator population size

are studied. Some theoretical analysis concerning the stability of equilibrium

points and the existence of stable limit cycles is included. Three models

are examined as examples , and for two of them computer simulations are

included to illustrate the changes in qualitative behaviour under nutrient

enrichment and increase of harvesting effort. The essential difference

between this study and our previous work on const~at rate harvesting (Braue r,

Soudack , and Jarosch , 1976) is that here, extinction of predators in finite

time is impossible although the predator population may tend to zero as

t -. c~~ • Also extinction of predators is much less sensitive to changes of

harvesting effort than for constant rate harvesting .
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RESPONSE OF PREDATO R-PREY SYSTEMS TO NUTRIENT

ENRICHMENT AND PROPO RTIONAL HARVESTING

F. Brauert and A. C. Soudack t

1. INTRODUCTION

In a previous study (Brauer, Soudack , Jarosch, 1976 ) we considered

the effect of harvesting predators at a constant rate from a predator-prey

system modelled by a pair of nonlinear ordinary differential equations.

With the aid of a general analysis applied to specific examples and of

computer simulations we demonstrated the possibilities of discontinuities

in limiting behaviour of solutions under nutrient enrichment and increases

in harvesting rate and of both stabilization and destabilization of systems.

These possibilities include extinction of the predator species in finite time.

In many ecological systems it is more natural to study the effect of

harvesting at a rate proportional to the size of the predator population.

This Is the case , for example, when the harvest is proportional to the

effort expended, a situation often assumed in models for fisheries manage-

ment, see , for example, Clark (1974).

In this paper, we parallel our previous work by studying the effect

of harvesting at a rate proportional to the size of the predator population

t f~~per.+anent ~ Mathematics , University of Wisconsin, Madison, U.S.A.

t Department of Electrical Engineering, University of British Columbia,
Vancouver,Canada . Research sponsored in part by the United States Army
under Contract No. DAAGZ9-75-C-0024 and in part by the National Research 4
Council of Canada grant #67-31 38.
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with a theoretical analysis followed by analysis of some specific

examples and computer simulations of two of these examples. It turns

out that there are significant differences between the dynamics of propor-

tional harvesting and of constant rate harvesting. We shall draw some

specific conclusions, but in general the situation is that response to

proportional harvesting is more predictable and much less sensitive to

changes in initial conditions. The possibility of extinction of the

predators in finite time does not arise In this case, unlike the case of

constant rate harvesting .
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2. THEORETICAL BACKGROUND

We consider the system of ordinary differential equations

(1) x ’ xf(x ,y)

, dx ,y = yg(x,y) - Ey, x = dt

as a model for the sizes x(t) of a prey population and y(t) of a

predator population at time t. Here, f(x, y) and g(x, y) are the

respective ~~~ capita growth rates of the two population sizes. Predators

are harve s ted at a time rate proportional to the size of the predator

population, with constant of proportionality E. This parameter E may

be regarded as a measure of the harvesting effort , and it is assumed

that the harvesting rate is proportional to this effort . As in our previous

• work ( Brauer 1976, Brauer, Soudack , Jarosch 1976) we assume that the

growth rates of the population sizes at time t depend only on the

population sizes at time t, even though this neglects many factors which

could be important for real predator-prey systems. Some of these factors

were suggested in (Brauer , Soudack, Jarosch 1976).

The predator-prey nature of the model is expressed by the assumptions

(2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where the subscripts indicate partial derivatives. We assume further that

(3) f
~

(x, y)g (x, y) - f ( x , Y)g~(x, y) > 0, [x > 0, y > 0]

which is satisfied by all the standard models of the form (I) for predator-prey

systems , cf. ( Brauer, 1976 ). In the examples which we shall consider ,

—3— 
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g(x, y) is independent of y, which means that the predators do not

interfere with one another in obtaining food. In this case , (3) is a

consequence of (Z ).

We shall denote by [x(t , E), y(t , E) I any solution of (I), to indicate

explicitly the dependence on the parameter E. We are Interested in the

limiting behaviour as t — ~ of bounded solutions of (1). According to

the Poincare -Bendjxson theory of two-dimensional autonomous systems

of differential equations (Coddington, Levinson, 1955 , Chapter i6) , a

bounded solution either tends to a limit, which we denote by

[x (E), y (E)J , or tends to a periodic orbit (limit cycle). Since the

only possible limits of solutions of (1) are asymptotically stable

equilibrium points, we study the behaviour of solutions of (1) by examining

the equilibrium points .

An equilibrium point of the system (I) is an intersection

[x ~ (E),y~,(E)] of the prey isocline

f(x,y) = 0

and the predator isocline

g(x , y) =

that is, a solution of the pair of equations

(4) f{x ,~,(E),y~,(E) ) = 0

g{x~~(E) , y~,(E) } = E

We assume that there is a unique equilibrium point [x~,(0),y (0)J for

-4-



E = 0 with x (0) > 0, y (0) > 0. In view of (2), an increase in E

moves the predator isocline (which is a vertical line If g(x, y) is

independent of y) to the right. Thus the effect of an increase in E

is to move the equilibrium to the right along the prey isocline f(x , y) = 0.

In the examples we shall study, the prey isocline f(x , y) = 0 has

a unique maximum, with f ( x , y) > 0 for small x and f ( x , y) <0

for large x. It is known ( Brauer, 1976) that if g ( x , y) 0, an

equilibrium [x (E) ,y~ (E )J is asymptotically stable if and only if

< 0

Since the effect of increasing E Is to move the equilibrium to the right,

increasing E may change an unstable equilibrium to a stable equilibrium,

• but it can not change a stable equilibrium to an unstable one. If

g ( x , y) ~ 0, then it is known (Brauer, 1976) that an equilibrium

[ X ~ ) (E), y (E)J is as ymptotically stable if and only if

x~ (E)f~
{x

~ 
(E), y~ (E) } + y~ (E)g {x~ (E) , y~, (E) } < 0

Under the additional hypotheses

y) < 0, f
xx
(x, y) < 0

it is easy to show that

~~ 
[xf,~(x, y) + yg~(x, y)J <0

where x and y are related by f(x , y) = 0, and from this it follows

that in the case g ( x , y) ~ 0 increasing E can stabilize an unstable

equilibrium but can not destabilize a stable equilibrium .
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We define the number K by f(K, 0) = 0, or K = ~ if f(x , 0) > 0

for all x > 0. Thus K is the carrying capacity of the prey species -

the equilibrium population the prey would obtain in the absence of

predators . It is clear from the geometry of the isoclines that

Ex ~, (E), y~ (E) J depends continuously on E, unlike the situation in the

case of constant rate harvesting ( Brauer , Soudack , Jarosch, 1976), where

the equilibrium point can disappear with a consequent extinction of the

predators in finite time. However, it is possible to produce a blological

catastrophe by harvesting the predators to extinction. If we define

(5) Ec = g(K,0)

then the equilibrium b r  E ~ E is at (K, 0), so that y~, (Ec) = 0.

Thus Ec may be called the critical harvesting effort . Observe that for

E > E the predator population tends to zero as t — ~‘ but does not

reach zero in finite time . Enrichment of the prey environment , as described

by an increase in the carrying capacity (Brauer, 1976; Brauer , Soudack ,

Jarosch, 1976) will produce an increase in the critical harvesting effort

because g(K, 0) is  an increasing function of K, in view of (2).

In studying real populations, we are interested only in the solutions

of (1) which remain in the first quadrant of the x - y plane . If either

population ever becomes zero, the predator-prey system will collapse.

For this reason, the equilibrium points of the system (1) at (0 , 0) and

at (K, 0) are of no practical interest. In fact , because of the possibility

-6-



of small perturbations and errors in the system (1), we should require

that solutions do not come too close to either axis. It was for this

reason that we introduced the concept of practical stability in (Brauer ,

Soudack , Jarosch, 1976 ). A system is said to be practically stable if

its solution orbit never comes closer than some preassigned distance to

either axis. In the same spirit, we should define the practical critical

harvesting effort as the harvesting effort which move s the equilibrium

along the prey Isocline not to (K, 0) but rather to (x , E) , where € is

a preassigned safety margin and f(x~, € )  = 0. Thus we might define

E = g(x ,c )

It is well-known (Coddington and Levinson, 19 55 , Chapter 15) that

the qualitative nature of an equilibrium point [x~,(E), y
~,

(E) j of the

system (1) is determined by the eigenvalues of the matrix obtained by

linearizing the system (1) about this point. A straightforward calculation,

using Taylor’s theorem and (4), shows that this matrix is

[x~~ E f x ~~ E , y,~,(E) } X~~(E)fy{X~ (E) , y~,(E))

A(E) = 
[Y~,( Eg {x~,(E), y~~(E) } y,~,(E)g (x~,(E), y~,(E))

If we define

A 1(E) tr A( E) = xf + yg

A 2(E) = det A(E) xY(f~~y 
- ~~~~ > 0

with all functions evaluated at [x~~(E), y~~(E)] , then the eigenvalues

of A(E) are

—7—
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{
~ (E) * [ { ~ (E))

2 
- 4~~ (E) J~~) .

1 1 2

We have four possibilities, j ust as in the case of constant rate harvest-

ing examined in (Brauer, Soudack, Jarosch, 19Th).

I . If A1(E) < 0, {~~1(E) )2 
— 4 A~(E) ~ 0, the equilibrium is an

asymptotically stable node .

2. If ~1(E) < 0, {~~1(E) )2 
- 4 ~~ (E) < 0, the equilibrium is an

asymptotically stable spiral point.

3 . If .~1(E) > 0, {~~1(E)} 2 
- 4 .~ 2(E) < 0, the equilibrium is an

unstable spiral point.

4. If A1(E) > 0, {~~1(E) }2 
- 4 ~~(E) ~ 0, the equilibrium is an

unstable node.

Also, as in the c~~ e of constant rate harvesting, a theorem of Kalmogorov

(1936) assure s the existence of an asymptotically stable limit cycle in

the first quadrant of the x - y olane in the latter two cases.

For the critical harvesting effort E
~
, since y~,,( E )  0, it is

easy to see that A1( E )  = x
~ 
(E 

~ x~
xoo (E ),y,~,

(E )) = Kf (K,0) < 0

and 
~ z(Ec) 0, which implies that the equilibrium is an asymptotically

stable node. In addition to the critical harvesting effort £ for which

the system collapses , we define the harvesting effort E which

stabilizes the system in the sense that the stable limit cycle collapses

to a stable spiral point, characterized by A 1( E )  = 0. Since

- 4~~2
(E ) = - 4A 2( E )  < 0, this transition from an unstable

-8-
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to a stable system always occurs at a spiral point. Further, we could

give a name to the harvesting effort which produces a transition between

a spiral point and a node, characterized by (~~1(E) } 2 
- 4 ~ 2

(E) 0.

This will not be explored further.

Now consider some examples to indicate how the foregoing theoretical

considerations may be applied, as well as some numerical data to

suggest aspects which can not readily be treated analytically.

-9-
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3. EXAMPLES

In this section we apply the results of the preceding section to

three examples of biological interest - the same three examples considered

in ( Brauer, Soudac k, Jarosch, 1976) except for order and the difference

in the mode of harvesting .

Example 1: Ivlev-type interaction (Rosenzweig, 1971).

Consider the choice

(6) f(x , y) = r(l - x/K) - (I - e cx )

-cJ -cxg(x ,y) = s(e — e  ) .

It follows immediately from (5 ) that Ec = g(K, 0) = s(e~~~ - e~~
K).

With the values r = 2, s = 1, b = 1, c = 0.1, J = Z0 , we find that for

K = 25 , E = 0.053; for K = 40, E = 0.117; for K 60, E = 0.132.c c c

The analytic calculation of E is so complicated as to be impractical .

This example will be examined more closely in the numerical study in

the following section .

Example 2; Mlchaelis-Menten type interaction (Holling, 1965).

Consider the choice

(7) f(x,y) = r(1 — x/K) — 
~~

(x ) sA(x-J Lg ~~‘~‘ - ( J + A ) ( x + A)

To assure the existence of an equilibrium In the first quadrant for E = 0

we mus t have K > J, and from (5) we obtain

S
-10-



E - 
sA ( K — J )

c ( J + A ) ( K ÷ A )

We have shown (Brauer, Soudack, Jarosch, 1976) that for E = 0 the

system is stable if K < A + ZJ and unstable if K> A + 2J. If K> A + 2J,

we calculate the harvesting effort E5 which stabilizes it as follows:

Since

r _ _ _ _f ( x ,y) = - 

~~~
+

(x + A)

E corresponds to I {x~~( E  ) , y ~~(E )} = 0 , or

YQO

(x +A)

But from (7) we see that

Y Q0 xQo
+ A  = r (l- 

~~~~~
)

and thus E corresponds to

r(l — = ~~~~ +A)

or K - 
~~ 

= x~, + A, with solution

- 
K - A

2

If  this value is greater than J, then

sA ( K - A - 2 1 )(8) E = g(x,~,) — ( J + A ) ( K + A )

With the values r = 2, s = 1, A = 10, J = 20, we find that for K = 25 ,

E
~ 

0.047; for K = 40 , E
~ 

= 0.133; and for K = 60, Ec = 0.190.

—11—
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For K 25 and K 40 , the unharvested system is stable and there

4 is no E , while for K = 60, E~ = 0.048 . This example will also be
examined more closely in the following section.

Example 3: (O’Brien, 1974) .

Consider the choice

(9, f(x ,y) — —

x x + A

sA(x — I)g(x, y) 
~ + A)(x + A)

for which K 
~~~~~. Since K = 00 , there is no E , but there is aC

harvesti ng effort which will make x
00 

(E) ~‘, namely

sAE = u r n  g(x , y) = 

~ + AX-.  00

R 
_______ ~‘Q0 RFrom f~(x ,y) = 

~~~~(x + A)
2 and x

00 + A x ’ we obtain

= - .i
~+ 

~ (x + A ) 
- 

2 
R.A 

< 0 ,00 00 x
00

(x
00

+A)

and therefore the system is stable for all harvesting efforts.

This completes the analysis for proportional harvesting of predator-
prey systems and is a parallel development to the case of constant-rate

harvesting of our previous paper (Brauer, Soudack and Jaroseb, 1976).

The following section gives the results of a comprehensive simulation

study of models I and 2, and should give the reader some insight into

the qualitative behaviour of the systems .

—12-
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4. SIMULATION STUDY

For illustrative purposes, com prehens ive simula tion studies have

been made on Example I (Rosenzweig, 1971) and Example 2 (Holling, 1965).

The simulations were carried out on the University of British Columbia ’s

IBM 37 0/1 68 using a variable-step Runge-Kutta integration routine. The

figure s presented in this section are computer plots . The piecewise

linearity of the plots is due to the plot routine which connects computed

points by straight lines. In actuality, as the step size approaches zero,

these plots will approach smooth curves with no discontinuity in slope.

The two parameters available for variation are K, which can be

increased by increasing prey nutrient, and E, the harvesting effo rt.

Three values of K are considered in both examples, i.e. K 25 , 40 , 60

which correspond respectively to the cases exhibiting a stable node,

stable spiral and limit cycle for E = 0. As E is increased , the approach

of the trajectory to the equilibrium point is not dependent on the initial

states of the system and hence, neither is the biological “extinction”

of the predators . Therefore, arbitrary initi al state s of (x, y) = (30 , 30)

have been used in all cases.

Example 1: (Rosenzweig, 1971 ).

Consider the system

(x ’ = x{2(l -~~ ) -  1[ l - e x p(- O . lx ) J )

(10)

L y ’ y[ exp(- 2)-ex p( -0.lx) - EJ

— 13—
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Case 1 (K = 25 , 0 .0<E<0 .06)

Figures 1, 2, 3 indicate the behaviour of the system as E is

increased from zero . As predicted, the stable equilibrium for E = 0 is

a node which tends toward the x-axl s as E is increased .

From the previous section, E , the critical harvesting effort is

0.0 53 , the value for which the equilibrium point reaches (K, 0) and

mathematical collapse occurs . The key difference in behaviour between

this system and that subjected to constant rate harvesting is that in this

case the trajectory approaches (K , 0) as t — 00, while in the constant

rate case , the predators go to extinction in finite time .

The conclusion to be drawn is that the collapse of the system due to

proportional harvesting is less sensitive than in the case for constant

rate harvesting, and hence we have ample warning that the harvesting

effort is reac hing dangerous levels. As in the case for constant rate

harvesting, the concept of “practical stability” holds.

Case 2 ( K = 4 0 , 0.0~~~E~~ 0 . i3)

This case corresponds to an increase in prey nutrient as compared to

Case 1. The equilibrium point for E = 0 is a stable spiral point,

indicating the destabilizing effect of increasing prey nutrient. As E is

increased, we obtain Figures 4, 5, 6, 7.

The above figures indicate the transition from spiral point to node

and the approach of this node to the x-axis. Calculations in the previous

section yield Ec = 0. 117 , and hence Figure 7 Is equivalent to a bioloqlcal

— 14-
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collapse. As in the case for constant rate harvesting, increase in the

prey nutrient allows for greater harvesting efforts .

Case 3 (K 60 , 0 < E < 0.1 s)

In this case , the prey nutrient has been further increased until,

for £ = 0 , the equilibrium point is an unstable spiral point surrounded

by a stable limit cycle. Increasing prey nutrient has further destabilized

the syste m and it is for this case that the concept of “practical stability”

is most meaningful . The reader is referred to our previous paper ( Brauer,

Soudack and Jarosch, 1976) .

Examination of the above figures indicates the stabilizing effect of

harvesting. The limit cycle is first reduced in amplitude. The equilibrium

point then becomes a spiral and then a node as harvesting is increased.

From the previous section, E = 0. 1 32, and Figure 1 2 show s biological

extinction of the predator for E = 0. 1 5. Again, in contrast to the case

for constant rate harvesting, mathematical extinction takes place only as

t — 

~ and hence we have ample warning that the harvest effort is becoming

critical. Also In contrast to the case for constant rate harvesting, the

extinction properties are not a function of the initial states.

Example 2: (Rolling, 1965 ).

Consider the system

x _ _ _x ’ = x (2( 1 — - x +

(11)
I , ~~( x - 2 O1 - E )- y  3( x + 1 0 )

—22—
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Although different in formulation, the behaviour of this system is

quIte similar to that of Example 1. The differences to note are that

(1) £ for the various values of K differ for those from the
C

previous example , and

(2) The calculation ox E for K = 60 is tractable and its value
S

is validated by the s i~iulat ion .

~~~~~~ ( K =  25 , O < E < 0 . 0 5 5 )

The behaviour of this system for E increasing is shown in

Figures 13 , 14, 15.

The calculated value for E is 0.047 as compared to 0.053 for

Example 1. Otherwise the type of behaviour is similar and no more need

be said.

Case 2 (K = 40, 0 ~ E < 0. 1 5)

The results of t)~ simulation for E increasing are shown in

Figures 16 , 17 , 18.

The calculated va lue of E is 0.1 33 as compare d to 0 .117

for Example 1. Otherwise the behaviour of the two sys tems is similar.

Case 3 ( K z  60, 01E~~. 0.22 )

Calculations from the previous section indicate that the transition

from a stable spiral point for E = 0 to an unstable spiral point surrounded

by a limit cycle occurs at K = 50. Hence, this system is also destabilized

by nutrient enrichment . Although not included in this presentation, case s

for higher K were examined and the re s ults indicate that the limit cycle

_ _ _ _ _ _ _ _ _  
I
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for E = 0 comes dangerously close to the axes. Invoking the concept of

practical stability therefore limits the upper value of K, and hence the

intuitive conclusion that increasing prey nutrient leads to a higher

predator harvest has its limitations.

The re sults for E increasing are shown in Figure s 19 to 24.

This set of figures clearly shows the stabilizing effect of harvesting .

Contraction of the limit cycle under a light harvest effort is desirable in

enhancing practical stability. The calculated value of E (the harvesting

effort to transform the unstable equilibrium to a stable one) is 0.048,

and this is validated by the figures. For higher harvest rates, the

equilibrium point becomes a node and approaches the x-axis. The calculated

value of E is 0.19 , which is also validated by this study.

It is worth noting that critical harvesting effort s depend on the model

chosen to represent a system. The foregoing examples indicate that since

more than one model might be assumed to represent the same system, care

must be exercised in using the calculated value of E as a measure of
C

the true system E .
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5. COMPARISONS BETWEEN CONSTANT- RATE AND PROPORTIONAL HAl- VESTING

C~~~parison of the results obtained from this study to those obtained

in the case of constant rate harvesting leads to the following observations:

I. In both cases , nutrient enrichment allows for higher harvest

rates and efforts .

2. In both cases , the concept of “practical stability” must be

invoked to prevent limit cycles from approaching the axes

and to prevent the trajectory due to high harvest rates and

efforts from approaching the x-axis.

3. Constant rate harvesting can produce extinction (both mathematically

and biologically) of the predator in finite time. In the case of

proportional harvesting, the equilibrium reache s the point (K, 0)

for E = E
~ 

and stays there. Therefore, mathematical extinction

of the predators occurs only as t -. . For all practical

purposes , biological extinction occurs for E = E
~
.

4. The high extinction sensitivity observed in constant rate harvest-

ing Is not pzesent in proportional harvesting . Thus, proportional

harvesting appears to be a safer technique. Ample warning is

given that dangerous levels of harvesting are being approached,

which is not the case for constant rate harvesting.
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L

6. CONCLUSIONS

The obj ect of this study was to extend the qualitative and quantita-

tive insights obtained for constant-rate harvesting ( Brauer, Soudack , and

Jarosch, 1976 ) to predator-prey systems subjected to proportional harvest-

ing. The results indicate that proportional harvesting is a safer method

if extinction of the predator species is to be avoided.

Various intriguing questions arose during the work. For example,

what type of harvesting creates a better yield? What types of strategies

will improve the yield ? What happens if a “closed season ” is imposed

on the system ?

We propose to investigate these questions, the answers to which

should provide a useful tool in resource management....
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20. ABSTRACT (Contd .)
~

~
.> examples , and for two of them computer simulations are included to

illustrate the changes in qualitative behaviour under nutrient enrichment
and increase of harvesting effort . The essential difference between this
study and our previous work on constant rate harvesting ( Brauer , Soudack ,
and Jarosch, 1976) is that here, extinction of predators in finite time is
impossible although the predator population may tend to zero as t °°~~

Also extinction of predators is much less sensitive to changes of harvesting
effort than for constant rate harve sting. -
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